Copied to
clipboard

G = C12.10C42order 192 = 26·3

3rd non-split extension by C12 of C42 acting via C42/C2xC4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.10C42, C23.15Dic6, (C2xC24).12C4, (C22xC8).6S3, (C2xC8).7Dic3, C4.49(D6:C4), (C2xC12).479D4, (C2xC4).165D12, (C22xC24).3C2, C4.10(C4xDic3), C4.Dic3.2C4, C6.3(C8.C4), (C22xC6).22Q8, C3:1(C4.C42), (C22xC4).430D6, C2.3(C24.C4), C12.63(C22:C4), C4.16(C6.D4), C22.19(C4:Dic3), C2.12(C6.C42), C6.12(C2.C42), C22.13(Dic3:C4), (C22xC12).533C22, (C2xC6).39(C4:C4), (C2xC4).100(C4xS3), (C2xC12).294(C2xC4), (C2xC4).74(C2xDic3), (C2xC4.Dic3).2C2, (C2xC4).234(C3:D4), SmallGroup(192,111)

Series: Derived Chief Lower central Upper central

C1C12 — C12.10C42
C1C3C6C12C2xC12C22xC12C2xC4.Dic3 — C12.10C42
C3C6C12 — C12.10C42
C1C2xC4C22xC4C22xC8

Generators and relations for C12.10C42
 G = < a,b,c | a12=1, b4=c4=a6, bab-1=a-1, ac=ca, cbc-1=a3b >

Subgroups: 168 in 90 conjugacy classes, 51 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C23, C12, C12, C2xC6, C2xC6, C2xC6, C2xC8, C2xC8, M4(2), C22xC4, C3:C8, C24, C2xC12, C2xC12, C22xC6, C22xC8, C2xM4(2), C2xC3:C8, C4.Dic3, C4.Dic3, C2xC24, C2xC24, C22xC12, C4.C42, C2xC4.Dic3, C22xC24, C12.10C42
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Q8, Dic3, D6, C42, C22:C4, C4:C4, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2.C42, C8.C4, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4.C42, C24.C4, C6.C42, C12.10C42

Smallest permutation representation of C12.10C42
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 13 4 22 7 19 10 16)(2 24 5 21 8 18 11 15)(3 23 6 20 9 17 12 14)(25 39 34 42 31 45 28 48)(26 38 35 41 32 44 29 47)(27 37 36 40 33 43 30 46)(49 63 58 66 55 69 52 72)(50 62 59 65 56 68 53 71)(51 61 60 64 57 67 54 70)(73 92 76 89 79 86 82 95)(74 91 77 88 80 85 83 94)(75 90 78 87 81 96 84 93)
(1 44 72 80 7 38 66 74)(2 45 61 81 8 39 67 75)(3 46 62 82 9 40 68 76)(4 47 63 83 10 41 69 77)(5 48 64 84 11 42 70 78)(6 37 65 73 12 43 71 79)(13 32 55 94 19 26 49 88)(14 33 56 95 20 27 50 89)(15 34 57 96 21 28 51 90)(16 35 58 85 22 29 52 91)(17 36 59 86 23 30 53 92)(18 25 60 87 24 31 54 93)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,13,4,22,7,19,10,16)(2,24,5,21,8,18,11,15)(3,23,6,20,9,17,12,14)(25,39,34,42,31,45,28,48)(26,38,35,41,32,44,29,47)(27,37,36,40,33,43,30,46)(49,63,58,66,55,69,52,72)(50,62,59,65,56,68,53,71)(51,61,60,64,57,67,54,70)(73,92,76,89,79,86,82,95)(74,91,77,88,80,85,83,94)(75,90,78,87,81,96,84,93), (1,44,72,80,7,38,66,74)(2,45,61,81,8,39,67,75)(3,46,62,82,9,40,68,76)(4,47,63,83,10,41,69,77)(5,48,64,84,11,42,70,78)(6,37,65,73,12,43,71,79)(13,32,55,94,19,26,49,88)(14,33,56,95,20,27,50,89)(15,34,57,96,21,28,51,90)(16,35,58,85,22,29,52,91)(17,36,59,86,23,30,53,92)(18,25,60,87,24,31,54,93)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,13,4,22,7,19,10,16)(2,24,5,21,8,18,11,15)(3,23,6,20,9,17,12,14)(25,39,34,42,31,45,28,48)(26,38,35,41,32,44,29,47)(27,37,36,40,33,43,30,46)(49,63,58,66,55,69,52,72)(50,62,59,65,56,68,53,71)(51,61,60,64,57,67,54,70)(73,92,76,89,79,86,82,95)(74,91,77,88,80,85,83,94)(75,90,78,87,81,96,84,93), (1,44,72,80,7,38,66,74)(2,45,61,81,8,39,67,75)(3,46,62,82,9,40,68,76)(4,47,63,83,10,41,69,77)(5,48,64,84,11,42,70,78)(6,37,65,73,12,43,71,79)(13,32,55,94,19,26,49,88)(14,33,56,95,20,27,50,89)(15,34,57,96,21,28,51,90)(16,35,58,85,22,29,52,91)(17,36,59,86,23,30,53,92)(18,25,60,87,24,31,54,93) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,13,4,22,7,19,10,16),(2,24,5,21,8,18,11,15),(3,23,6,20,9,17,12,14),(25,39,34,42,31,45,28,48),(26,38,35,41,32,44,29,47),(27,37,36,40,33,43,30,46),(49,63,58,66,55,69,52,72),(50,62,59,65,56,68,53,71),(51,61,60,64,57,67,54,70),(73,92,76,89,79,86,82,95),(74,91,77,88,80,85,83,94),(75,90,78,87,81,96,84,93)], [(1,44,72,80,7,38,66,74),(2,45,61,81,8,39,67,75),(3,46,62,82,9,40,68,76),(4,47,63,83,10,41,69,77),(5,48,64,84,11,42,70,78),(6,37,65,73,12,43,71,79),(13,32,55,94,19,26,49,88),(14,33,56,95,20,27,50,89),(15,34,57,96,21,28,51,90),(16,35,58,85,22,29,52,91),(17,36,59,86,23,30,53,92),(18,25,60,87,24,31,54,93)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A···6G8A···8H8I···8P12A···12H24A···24P
order12222234444446···68···88···812···1224···24
size11112221111222···22···212···122···22···2

60 irreducible representations

dim1111122222222222
type+++++--++-
imageC1C2C2C4C4S3D4Q8Dic3D6C4xS3D12C3:D4Dic6C8.C4C24.C4
kernelC12.10C42C2xC4.Dic3C22xC24C4.Dic3C2xC24C22xC8C2xC12C22xC6C2xC8C22xC4C2xC4C2xC4C2xC4C23C6C2
# reps12184131214242816

Matrix representation of C12.10C42 in GL3(F73) generated by

100
0240
0070
,
4600
001
0270
,
4600
0630
0051
G:=sub<GL(3,GF(73))| [1,0,0,0,24,0,0,0,70],[46,0,0,0,0,27,0,1,0],[46,0,0,0,63,0,0,0,51] >;

C12.10C42 in GAP, Magma, Sage, TeX

C_{12}._{10}C_4^2
% in TeX

G:=Group("C12.10C4^2");
// GroupNames label

G:=SmallGroup(192,111);
// by ID

G=gap.SmallGroup(192,111);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,176,184,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^4=c^4=a^6,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<